Adenovirus E1A N-terminal amino acid sequence requirements for repression of transcription in vitro and in vivo correlate with those required for E1A interference with TBP-TATA complex formation.
نویسندگان
چکیده
The adenovirus (Ad) E1A 243R oncoprotein encodes an N-terminal transcription repression domain that is essential for early viral functions, cell immortalization, and cell transformation. The transcription repression function requires sequences within amino acids 1 to 30 and 48 to 60. To elucidate the roles of the TATA-binding protein (TBP), p300, and the CREB-binding protein (CBP) in the mechanism(s) of E1A repression, we have constructed 29 amino acid substitution mutants and 5 deletion mutants spanning the first 30 amino acids within the E1A 1-80 polypeptide backbone. These mutant E1A polypeptides were characterized with regard to six parameters: the ability to repress transcription in vitro and in vivo, to disrupt TBP-TATA box interaction, and to bind TBP, p300, and CBP. Two regions within E1A residues 1 to 30, amino acids 2 to 6 and amino acid 20, are critical for E1A transcription repression in vitro and in vivo and for the ability to interfere with TBP-TATA interaction. Replacement of 6Cys with Ala in the first region yields the most defective mutant. Replacement of 20Leu with Ala, but not substitutions in flanking residues, yields a substantially defective phenotype. Protein binding assays demonstrate that replacement of 6Cys with Ala yields a mutant completely defective in interaction with TBP, p300, and CBP. Our findings are consistent with a model in which the E1A repression function involves interaction of E1A with p300/CBP and interference with the formation of a TBP-TATA box complex.
منابع مشابه
Two domains of p53 interact with the TATA-binding protein, and the adenovirus 13S E1A protein disrupts the association, relieving p53-mediated transcriptional repression.
The tumor suppressor gene product p53 can activate and repress transcription. Both transcriptional activation and repression are thought to involve the direct interaction of p53 with the basal transcriptional machinery. Previous work has demonstrated an in vitro interaction between p53 and the TATA-binding protein that requires amino acids 20 to 57 of p53 and amino acids 220 to 271 of the TATA-...
متن کاملThe transactivation domain of adenovirus E1A interacts with the C terminus of human TAF(II)135.
The CR3 activation domain of the human adenovirus E1A protein stimulates transcription by forming protein-protein interactions with DNA sequence-specific binding factors and components of the TFIID complex. Here, we demonstrate that CR3 can complex with the extreme C-terminal 105 amino acids of the human TATA box binding-factor-associated protein, hTAF(II)135. Furthermore, the C-terminal region...
متن کاملThe adenovirus E1A oncoprotein N-terminal transcriptional repression domain enhances p300 autoacetylation and inhibits histone H3 Lys18 acetylation
Expression of the adenovirus E1A N-terminal transcription repression domain alone (E1A 1-80) represses transcription from specific promoters such as HER2 [1] and from reconstituted chromatin [2]. Significantly, E1A 1-80 can induce the death of human breast cancer cells over-expressing the HER2 oncogene [1] as well as other cancer cells. Here, we report that E1A 1-80 alone is sufficient to inhib...
متن کاملAdenovirus E1A proteins interact with the cellular YY1 transcription factor.
The adenovirus 12S and 13S E1A proteins have been shown to relieve repression mediated by the cellular transcription factor YY1. The 13S E1A protein not only relieves repression but also activates transcription through YY1 binding sites. In this study, using a variety of in vivo and in vitro assays, we demonstrate that both E1A proteins can bind to YY1, although the 13S E1A protein binds more e...
متن کاملTATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein.
Using a protein binding assay, we show that the amino-terminal 204 amino acids of the c-Myc protein interact directly with a key component of the basal transcription factor TFIID, the TATA box-binding protein (TBP). Essentially the same region of the c-Myc protein also binds the product of the retinoblastoma gene, the RB protein. c-Myc protein coimmunoprecipitates with TBP in lysates of mammali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 76 3 شماره
صفحات -
تاریخ انتشار 2002